If it's not what You are looking for type in the equation solver your own equation and let us solve it.
11t^2-24t+4=0
a = 11; b = -24; c = +4;
Δ = b2-4ac
Δ = -242-4·11·4
Δ = 400
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{400}=20$$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-24)-20}{2*11}=\frac{4}{22} =2/11 $$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-24)+20}{2*11}=\frac{44}{22} =2 $
| X+1/2y=60 | | h+-70=563 | | 9k^2+4k-5=0 | | 6x-35=17 | | 4(d-90)=36 | | 3f^2+26f+16=0 | | 15y-25=2.5y | | W^2-13w-14=0 | | 46v^2+82v=0 | | 14=2u-36 | | 84÷r=12. | | 2z–31=-9z+24 | | 24=3h-42 | | t/9+42=8 | | 3(x-2)-7=8 | | −8+8x=56 | | 8(t+2)=96 | | 2t=–6+4t | | 10+9p=28 | | 2(b-80)=4 | | 5(g-87)=55 | | x⋅4⋅5=2⋅10⋅x | | –3+8n=9n+7 | | 9(c-93)=45 | | 64-9pp=-3 | | z-23/4=10 | | Y=4x-98,x= | | A=3x+2+4x | | 2(x+5)^5=128 | | 3s+29=74 | | (45-9x)½=x-5 | | 180=108+3x |